In this article, using an exemplar-based approach, we investigate the inpainting problem, introducing a new mathematical functional, whose minimization determines the quality of the reconstructions. The new functional expression takes into account of fnite differences terms, in a similar fashion to what happens in the theoretical Sobolev spaces. Moreover, we introduce a new priority index to determine the scanning order of the points to inpaint, prioritizing the uncertainty reduction in the choice. The achieved results highlight important theoretical-connected aspects of the inpainting by patch procedure.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
We address the problem of unsupervised domain adaptation when the source domain differs from the target domain because of a shift in the distribution of a latent subgroup. When this subgroup confounds all observed data, neither covariate shift nor label shift assumptions apply. We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target. The identification results are constructive, immediately suggesting an algorithm for estimating the optimal predictor in the target. For continuous observations, when this algorithm becomes impractical, we propose a latent variable model specific to the data generation process at hand. We show how the approach degrades as the size of the shift changes, and verify that it outperforms both covariate and label shift adjustment.
translated by 谷歌翻译
本文介绍了Apamant,这是一组软件模块,可为现有的机器人计划和控制软件框架提供掌握计划功能。我们提出的工作允许用户调整操作任务,以在不同的情况下使用最小的用户输入,从而减少操作员的认知负载。开发的工具包括(1)基于插件的组件,使得易于扩展默认功能并使用第三方Grasp库,(2)以对象为中心的方式来定义任务约束,(3)用户友好的RVIZ接口使用GRASP计划者实用程序,以及(4)使用感知数据来编程任务的交互式工具。我们在各种机器人模拟上测试了框架。
translated by 谷歌翻译
脑病理通常表现为组织的部分或完全丧失。许多神经影像学研究的目的是捕获有关感兴趣的临床变量(例如疾病进展)的组织变化的位置和数量。形态分析方法捕获了与临床变量有关的组织分布或其他含量的兴趣分布的局部差异。我们建议通过基于不平衡的最佳传输的附加特征提取步骤来增强形态分析。最佳运输特征提取步骤增加了导致空间分散组织损失的病理学的统计能力,从而最大程度地减少了由于空间未对准或大脑拓扑差异而对变化的敏感性,并将由于组织位置而导致的变化而分离。我们证明了在阿尔茨海默氏病的OASIS-1研究的体积形态学分析的背景下,提出的最佳运输特征提取步骤。结果表明,所提出的方法可以识别组织的变化和差异,而这些差异是无法测量的。
translated by 谷歌翻译
用于探索美国国家航空航天局的搜索工具(广告)可以相当丰富和赋予(例如,类似和趋势的运营商),但研究人员尚未允许完全杠杆语义搜索。例如,对“普朗克任务的结果”查询应该能够区分普朗克(人,任务,常量,机构和更多)的所有各种含义,而无需从用户进一步澄清。在广告中,我们正在将现代机器学习和自然语言处理技术应用于我们最近的天文出版物的数据集,以培训Astrobert,这是一种基于Google研究的深刻语境语言模型。使用AstrBert,我们的目标是丰富广告数据集并提高其可发现性,特别是我们正在开发自己的命名实体识别工具。我们在这里展示我们初步的结果和经验教训。
translated by 谷歌翻译
有条件神经密度估计器的仿真推断是解决科学逆问题的强大方法。然而,这些方法通常将底层向前模型视为一个黑匣子,没有办法利用等物学,例如协调。协调在科学模型中是常见的,然而将它们直接集成到表达推导网络中(例如标准化流动)并不简单。我们在这里描述了在参数和数据的联合转换下掺入协调的替代方法。我们的方法 - 称为组等级神经后后估计(GNPE) - 基于自始终标准化数据的“姿势”,同时估计在参数上后部。它是独立的架构,并适用于精确和近似的协调。作为现实世界的应用,我们使用GNPE从引力波观测到Astrophysical Block Block Systems的摊销推理。我们表明GNPE实现了最先进的准确性,同时减少了三个数量级的推理时间。
translated by 谷歌翻译
灵巧的操纵仍然是机器人技术中的一个空缺问题。为了协调研究界为解决这个问题的努力,我们提出了共同的基准。我们设计和构建了机器人平台,该平台托管在MPI上供智能系统托管,可以远程访问。每个平台由三个能够敏捷物体操纵的机器人手指组成。用户能够通过提交自动执行的代码(类似于计算群集)来远程控制平台。使用此设置,i)我们举办机器人竞赛,来自世界任何地方的团队访问我们的平台以应对具有挑战性的任务ii)我们发布了在这些比赛中收集的数据集(包括数百个机器人小时),而我们为研究人员提供了访问自己项目的这些平台。
translated by 谷歌翻译
在智能手机和控制器系统中的爆炸性增长之后,在从集中数据朝向设备生成的数据中消除数据如何生成数据的加速偏移。作为响应,机器学习算法正在适于在本地运行,潜在的硬件有限,设备,以改善用户隐私,减少延迟并更节能。但是,我们对这些方向算法的表现方式和应培训的理解仍然相当有限。为了解决这个问题,介绍了一种方法来自动综合降低的神经网络(具有较少的神经元)近似近似较大的输入/输出映射。从凸的半定程序生成降低的神经网络的权重和偏差,该凸形半定程序产生相对于较大网络的最坏情况近似误差。获得该近似误差的最坏情况界限,并且该方法可以应用于各种神经网络架构。例如,如何区分所提出的方法来产生小型神经网络的现有方法。修剪是在训练成本函数中直接包含最坏情况近似误差,这应该增加鲁棒性。数值示例突出了所提出的方法的潜力。本文的重新实现目的是概括最近导致神经网络对其重量和偏差的鲁棒合成问题的鲁棒性分析。
translated by 谷歌翻译